		I	Se	me	154	eΥ	イト	-53	\mathcal{D}_{i}	esi gn	ፈ	Embedded	
USN													12EC118

M.Tech. Degree Examination, Dec.2013/Jan.2014 **Advanced Embedded System**

Tin	Marks:100		
1 111	10	Note: Answer any FIVE full questions.	
1	a. b. c.	Distinguish between Big-Endian and Little-Endian processors, with an example. Explain the different types of RAM used for embedded system design. Describe the role of Brown-Out protection circuit.	(06 Marks) (08 Marks) (06 Marks)
2	a. b. c.	Explain the operation of the 12C on-board communication interface; with a disc the sequence of operations required. Discuss ZigBee network model. Explain the important operational quality attributes to be considered in any system design.	(08 Marks) (06 Marks)
3	a. b. c.	Compare dataflow graph (DFG) and control data flow graph (CDFG) model. Design an embedded system for driver/passenger 'seat belt warning' in an automore FSM model implement wait state using timer. What is UML? What are the fundamental building blocks of UML? Explain diagram, with an example.	(08 Marks)
4	a. b. c.	Discuss "super-loop" based embedded firm ware design. With a neat diagram, explain the conversion process of a high level language language. Also explain the advantages of high level language based development. What is "inline assembly"?	(06 Marks) to machine (10 Marks) (04 Marks)
5	а. Ъ.	Explain the round robin process scheduling. Three processes P ₁ , P ₂ , P ₃ with estimated completion time 10, 5, 7 ms respectively ready queue together. Calculate Waiting Time (WT) and Turn Around Time (TA process. Also calculate average WT and average TAT in SJF (Shortest Job First)	1) for each
	c.	Differentiate between threads and processes.	(06 Marks)
6	a. b. c.	What is semaphore? Compare 'binary semaphore' and 'counting semaphore'.	(06 Marks) (06 Marks) (08 Marks)
7	a. b. c.	simulator firmware debugging. Explain the 'Boundary Scan' based hardware debugging.	vantages of (06 Marks) (08 Marks) (06 Marks)
8	a. b.	` 11 T ' D '>	

- Java for embedded development.

Object-Oriented Model.

(20 Marks)